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Equivalence covering

An equivalence subgraph is a
subgraph isomorphic to a
disjoint union of cliques.

Definition (Duchet 1979)

A k-equivalence covering of a graph G is a covering of its edges with k
equivalence subgraphs of G .

The minimum k for which this is possible is
the equivalence number of G , denoted eq(G ).
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Results

Theorem (Alon 1986)

Let G be a graph on n vertices with minimum degree δ. Then

log2 n − log2(n − δ − 1) ≤ eq(G ) ≤ 2e2(n − δ)2 loge n.

Theorem (McClain 2008)

If G is a graph on n vertices, then eq(L(G )) ≤ 4
⌈

log n
log 12

⌉
.

Conjecture (McClain 2008)

If G is a triangle-free graph, then eq(L(G )) ≤ 3.

Theorem (E., Gimbel & King 2009)

For any graph G , 1
3 (log log χ(G ) + 1) ≤ eq(L(G )) ≤ 2 (log log χ(G ) + 1) .
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Orientations

A k-orientation covering of a graph G is a set of orientations
−→
G1, . . . ,

−→
Gk of

G so that for every vertex u of G with neighbors v and w , there is an i

such that −→uv ,−→uw ∈
−→
E (
−→
Gi ). The minimum k for which this is possible is

the orientation covering number of G , denoted σ(G ).

Lemma
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Orientations and Homomorphisms

Theorem

For any graph G , log log χ(G ) + 1 ≤ σ(G ) ≤ 2 (log log χ(G ) + 1) .

A homomorphism from a graph G to a graph H is a function
f : V (G )→ V (H) such that any two adjacent vertices of G get mapped
to adjacent vertices of H.

Lemma

Let G and H be graphs such that there is a homomorphism from G to H.
Then σ(G ) ≤ σ(H).

Consequence

For any graph G with chromatic number k, σ(G ) ≤ σ(Kk).
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The Upper Bound

Theorem

For any integer n ≥ 2, σ(Kn) ≤ 2 (log2 log2 n + 1) .

Theorem (Erdős & Szekeres 1935)

Any sequence of n2 + 1 real numbers contains a monotonic subsequence of
n + 1 elements.

Consequence

Any sequence of 22k
+ 1 vectors of Rk contains a monotonic subsequence

of size 3 (here monotonic means monotonic in each coordinate).

Theorem (De Bruijn 1940’s)

There exists a sequence of 22k
vectors of Rk without monotonic

subsequence of size 3.
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Ȳ

1, . . . ,k

X X̄
Y



The Lower Bound

Theorem

For any graph G , χ(G ) ≤ 22σ(G)−1
.

Ȳ
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Conclusion

Theorem

For any graph G , log log χ(G ) + 1 ≤ σ(G ) ≤ 2 (log log χ(G ) + 1) .

Corollary

For any graph G , 1
3 (log log χ(G ) + 1) ≤ eq(L(G )) ≤ 2 (log log χ(G ) + 1) .

Lemma

A graph G has σ(G ) = 3 precisely if 3 ≤ χ(G ) ≤ 4, and σ(G ) = 4
precisely if 5 ≤ χ(G ) ≤ 12.

Theorem

It is NP-complete to decide whether or not a triangle-free graph G has
σ(G ) ≤ 3 (resp. σ(G ) ≤ 4). Equivalently, it is NP-complete to decide
whether or not eq(L(G )) ≤ 3 (resp. eq(L(G )) ≤ 4).
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