COVERING LINE GRAPHS WITH EQUIVALENCE RELATIONS

Louis Esperet ^b - John Gimbel [‡] - Andrew King [‡]

CNRS, Laboratoire G-SCOP, Grenoble, France
 University of Alaska, Fairbanks, USA
 Columbia University, NYC, USA

Grenoble, France September 16, 2009

ORIGINAL PROBLEM

ORIGINAL PROBLEM

An equivalence subgraph is a subgraph isomorphic to a disjoint union of cliques.

An equivalence subgraph is a subgraph isomorphic to a disjoint union of cliques.

An equivalence subgraph is a subgraph isomorphic to a disjoint union of cliques.

Definition (Duchet 1979)

A *k*-equivalence covering of a graph G is a covering of its edges with k equivalence subgraphs of G.

An equivalence subgraph is a subgraph isomorphic to a disjoint union of cliques.

Definition (Duchet 1979)

A *k*-equivalence covering of a graph G is a covering of its edges with k equivalence subgraphs of G. The minimum k for which this is possible is the equivalence number of G, denoted eq(G).

Theorem (Alon 1986)

$$\log_2 n - \log_2(n - \delta - 1) \le eq(G) \le 2e^2(n - \delta)^2 \log_e n.$$

Theorem (Alon 1986)

$$\log_2 n - \log_2(n-\delta-1) \le eq(G) \le 2e^2(n-\delta)^2 \log_e n.$$

Theorem (Alon 1986)

$$\log_2 n - \log_2(n-\delta-1) \le eq(G) \le 2e^2(n-\delta)^2 \log_e n.$$

Theorem (Alon 1986)

$$\log_2 n - \log_2(n-\delta-1) \le eq(G) \le 2e^2(n-\delta)^2 \log_e n.$$

Theorem (Alon 1986)

$$\log_2 n - \log_2(n-\delta-1) \le eq(G) \le 2e^2(n-\delta)^2 \log_e n.$$

Theorem (Alon 1986)

$$\log_2 n - \log_2(n-\delta-1) \le eq(G) \le 2e^2(n-\delta)^2 \log_e n.$$

Theorem (Alon 1986)

Let G be a graph on n vertices with minimum degree δ . Then

$$\log_2 n - \log_2(n-\delta-1) \le eq(G) \le 2e^2(n-\delta)^2 \log_e n.$$

Theorem (McClain 2008)

If G is a graph on n vertices, then $eq(L(G)) \le 4 \left\lceil \frac{\log n}{\log 12} \right\rceil$.

Theorem (Alon 1986)

Let G be a graph on n vertices with minimum degree δ . Then

$$\log_2 n - \log_2(n-\delta-1) \le eq(G) \le 2e^2(n-\delta)^2 \log_e n.$$

Theorem (McClain 2008)

If G is a graph on n vertices, then $eq(L(G)) \le 4 \left| \frac{\log n}{\log 12} \right|$.

Conjecture (McClain 2008)

If G is a triangle-free graph, then $eq(L(G)) \leq 3$.

Theorem (Alon 1986)

Let G be a graph on n vertices with minimum degree δ . Then

$$\log_2 n - \log_2(n-\delta-1) \le eq(G) \le 2e^2(n-\delta)^2 \log_e n.$$

Theorem (McClain 2008)

If G is a graph on n vertices, then $eq(L(G)) \le 4 \left| \frac{\log n}{\log 12} \right|$.

Conjecture (McClain 2008)

If G is a triangle-free graph, then $eq(L(G)) \leq 3$.

Theorem (E., Gimbel & King 2009) For any graph G, $\frac{1}{3} (\log \log \chi(G) + 1) \le eq(L(G)) \le 2 (\log \log \chi(G) + 1)$.

A *k*-orientation covering of a graph *G* is a set of orientations $\overrightarrow{G_1}, \ldots, \overrightarrow{G_k}$ of *G* so that for every vertex *u* of *G* with neighbors *v* and *w*, there is an *i* such that $\overrightarrow{uv}, \overrightarrow{uw} \in \overrightarrow{E}(\overrightarrow{G_i})$.

A *k*-orientation covering of a graph *G* is a set of orientations $\overrightarrow{G_1}, \ldots, \overrightarrow{G_k}$ of *G* so that for every vertex *u* of *G* with neighbors *v* and *w*, there is an *i* such that $\overrightarrow{uv}, \overrightarrow{uw} \in \overrightarrow{E}(\overrightarrow{G_i})$. The minimum *k* for which this is possible is the orientation covering number of *G*, denoted $\sigma(G)$.

A *k*-orientation covering of a graph *G* is a set of orientations $\overrightarrow{G_1}, \ldots, \overrightarrow{G_k}$ of *G* so that for every vertex *u* of *G* with neighbors *v* and *w*, there is an *i* such that $\overrightarrow{uv}, \overrightarrow{uw} \in \overrightarrow{E}(\overrightarrow{G_i})$. The minimum *k* for which this is possible is the orientation covering number of *G*, denoted $\sigma(G)$.

Lemma

A *k*-orientation covering of a graph *G* is a set of orientations $\overrightarrow{G_1}, \ldots, \overrightarrow{G_k}$ of *G* so that for every vertex *u* of *G* with neighbors *v* and *w*, there is an *i* such that $\overrightarrow{uv}, \overrightarrow{uw} \in \overrightarrow{E}(\overrightarrow{G_i})$. The minimum *k* for which this is possible is the orientation covering number of *G*, denoted $\sigma(G)$.

Lemma

A *k*-orientation covering of a graph *G* is a set of orientations $\overrightarrow{G_1}, \ldots, \overrightarrow{G_k}$ of *G* so that for every vertex *u* of *G* with neighbors *v* and *w*, there is an *i* such that $\overrightarrow{uv}, \overrightarrow{uw} \in \overrightarrow{E}(\overrightarrow{G_i})$. The minimum *k* for which this is possible is the orientation covering number of *G*, denoted $\sigma(G)$.

Lemma

A *k*-orientation covering of a graph *G* is a set of orientations $\overrightarrow{G_1}, \ldots, \overrightarrow{G_k}$ of *G* so that for every vertex *u* of *G* with neighbors *v* and *w*, there is an *i* such that $\overrightarrow{uv}, \overrightarrow{uw} \in \overrightarrow{E}(\overrightarrow{G_i})$. The minimum *k* for which this is possible is the orientation covering number of *G*, denoted $\sigma(G)$.

Lemma

A *k*-orientation covering of a graph *G* is a set of orientations $\overrightarrow{G_1}, \ldots, \overrightarrow{G_k}$ of *G* so that for every vertex *u* of *G* with neighbors *v* and *w*, there is an *i* such that $\overrightarrow{uv}, \overrightarrow{uw} \in \overrightarrow{E}(\overrightarrow{G_i})$. The minimum *k* for which this is possible is the orientation covering number of *G*, denoted $\sigma(G)$.

Lemma

A *k*-orientation covering of a graph *G* is a set of orientations $\overrightarrow{G_1}, \ldots, \overrightarrow{G_k}$ of *G* so that for every vertex *u* of *G* with neighbors *v* and *w*, there is an *i* such that $\overrightarrow{uv}, \overrightarrow{uw} \in \overrightarrow{E}(\overrightarrow{G_i})$. The minimum *k* for which this is possible is the orientation covering number of *G*, denoted $\sigma(G)$.

Lemma

For any triangle-free graph G, $eq(L(G)) = \sigma(G)$.

Theorem

For any graph G, $\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$.

Theorem

For any graph G, $\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$.

A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ such that any two adjacent vertices of G get mapped to adjacent vertices of H.

Theorem

For any graph G, $\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$.

A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ such that any two adjacent vertices of G get mapped to adjacent vertices of H.

Lemma

Theorem

For any graph G, $\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$.

A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ such that any two adjacent vertices of G get mapped to adjacent vertices of H.

Lemma

Theorem

For any graph G,
$$\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$$
.

A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ such that any two adjacent vertices of G get mapped to adjacent vertices of H.

Lemma

Theorem

For any graph G,
$$\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$$
.

A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ such that any two adjacent vertices of G get mapped to adjacent vertices of H.

Lemma

Theorem

For any graph G,
$$\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$$
.

A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ such that any two adjacent vertices of G get mapped to adjacent vertices of H.

Lemma

Theorem

For any graph G,
$$\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$$
.

A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ such that any two adjacent vertices of G get mapped to adjacent vertices of H.

Lemma

Theorem

For any graph G,
$$\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$$
.

A homomorphism from a graph G to a graph H is a function $f: V(G) \rightarrow V(H)$ such that any two adjacent vertices of G get mapped to adjacent vertices of H.

Lemma

Let G and H be graphs such that there is a homomorphism from G to H. Then $\sigma(G) \leq \sigma(H)$.

Consequence

For any graph G with chromatic number k, $\sigma(G) \leq \sigma(K_k)$.

Theorem

Theorem

For any integer
$$n \ge 2$$
, $\sigma(K_n) \le 2(\log_2 \log_2 n + 1)$.

Theorem (Erdős & Szekeres 1935)

Any sequence of $n^2 + 1$ real numbers contains a monotonic subsequence of n + 1 elements.

Theorem

For any integer
$$n \ge 2$$
, $\sigma(K_n) \le 2(\log_2 \log_2 n + 1)$.

Theorem (Erdős & Szekeres 1935)

Any sequence of $n^2 + 1$ real numbers contains a monotonic subsequence of n + 1 elements.

Consequence

Any sequence of $2^{2^k} + 1$ vectors of \mathbb{R}^k contains a monotonic subsequence of size 3 (here monotonic means monotonic in each coordinate).

Theorem

For any integer
$$n \ge 2$$
, $\sigma(K_n) \le 2(\log_2 \log_2 n + 1)$.

Theorem (Erdős & Szekeres 1935)

Any sequence of $n^2 + 1$ real numbers contains a monotonic subsequence of n + 1 elements.

Consequence

Any sequence of $2^{2^k} + 1$ vectors of \mathbb{R}^k contains a monotonic subsequence of size 3 (here monotonic means monotonic in each coordinate).

Theorem (De Bruijn 1940's)

There exists a sequence of 2^{2^k} vectors of \mathbb{R}^k without monotonic subsequence of size 3.

Theorem

$$n = 2^{2^{k}}$$

$$k \begin{bmatrix} 11 & 12 & 9 & 10 & 15 & 16 & 13 & 14 & 3 & 4 & 1 & 2 & 7 & 8 & 5 & 6 \\ 4 & 3 & 2 & 1 & 8 & 7 & 6 & 5 & 12 & 11 & 10 & 9 & 16 & 15 & 14 & 13 \end{bmatrix}$$

Theorem

$$n = 2^{2^{k}}$$

$$k \begin{bmatrix} 11 & 12 & 9 & 10 & 15 & 16 & 13 & 14 & 3 & 4 & 1 & 2 & 7 & 8 & 5 & 6 \\ 4 & 3 & 2 & 1 & 8 & 7 & 6 & 5 & 12 & 11 & 10 & 9 & 16 & 15 & 14 & 13 \end{bmatrix}$$

Theorem

$$n = 2^{2^{k}}$$

$$k+1\begin{bmatrix} 11 & 12 & 9 & 10 & 15 & 16 & 13 & 14 & 3 & 4 & 1 & 2 & 7 & 8 & 5 & 6 \\ 4 & 3 & 2 & 1 & 8 & 7 & 6 & 5 & 12 & 11 & 10 & 9 & 16 & 15 & 14 & 13 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \end{bmatrix}$$

Theorem

$$n = 2^{2^{k}}$$

$$k+1 \begin{bmatrix} 11 & 12 & 9 & 10 & 15 & 16 & 13 & 14 & 3 & 4 & 1 & 2 & 7 & 8 & 5 & 6 \\ 4 & 3 & 2 & 1 & 8 & 7 & 6 & 5 & 12 & 11 & 10 & 9 & 16 & 15 & 14 & 13 \\ 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 \end{bmatrix}$$

Theorem

Theorem

Theorem

Theorem

Theorem

Theorem

For any graph G, $\chi(G) \leq 2^{2^{\sigma(G)-1}}$.

$1,\ldots,k$

Theorem

For any graph G, $\chi(G) \leq 2^{2^{\sigma(G)-1}}$.

$1,\ldots,k$

Theorem

For any graph G, $\chi(G) \leq 2^{2^{\sigma(G)-1}}$.

$1,\ldots,k$

Theorem

For any graph G, $\chi(G) \leq 2^{2^{\sigma(G)-1}}$.

Theorem

For any graph G, $\chi(G) \leq 2^{2^{\sigma(G)-1}}$.

Theorem

For any graph G, $\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$.

Theorem

For any graph G,
$$\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$$
.

Corollary

For any graph G, $\frac{1}{3} \left(\log \log \chi(G) + 1 \right) \le eq(L(G)) \le 2 \left(\log \log \chi(G) + 1 \right)$.

Theorem

For any graph G,
$$\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$$
.

Corollary

For any graph G, $\frac{1}{3}(\log \log \chi(G) + 1) \le eq(L(G)) \le 2(\log \log \chi(G) + 1)$.

Lemma

A graph G has $\sigma(G) = 3$ precisely if $3 \le \chi(G) \le 4$, and $\sigma(G) = 4$ precisely if $5 \le \chi(G) \le 12$.

Theorem

For any graph G,
$$\log \log \chi(G) + 1 \le \sigma(G) \le 2 (\log \log \chi(G) + 1)$$
.

Corollary

For any graph G, $\frac{1}{3} (\log \log \chi(G) + 1) \le eq(L(G)) \le 2 (\log \log \chi(G) + 1)$.

Lemma

A graph G has $\sigma(G) = 3$ precisely if $3 \le \chi(G) \le 4$, and $\sigma(G) = 4$ precisely if $5 \le \chi(G) \le 12$.

Theorem

It is NP-complete to decide whether or not a triangle-free graph G has $\sigma(G) \leq 3$ (resp. $\sigma(G) \leq 4$). Equivalently, it is NP-complete to decide whether or not $eq(L(G)) \leq 3$ (resp. $eq(L(G)) \leq 4$).