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logy n — logy(n — 6 — 1) < eq(G) < 2e?(n — §)?log, n.

Theorem (McClain 2008)

If G is a graph on n vertices, then eq(L(G)) < 4 H?ggl"z—‘ .

Conjecture (McClain 2008)
If G is a triangle-free graph, then eq(L(G)) < 3.

Theorem (E., Gimbel & King 2009)
For any graph G, 1 (loglog x(G) + 1) < eq(L(G)) < 2(loglog x(G) + 1).
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A k-orientation covering of a graph G is a set of orientations a, ey 5;: of
G so that for every vertex u of G with neighbors v and w, there is an /
such that uv, uw € E)(E,)) The minimum k for which this is possible is
the orientation covering number of G, denoted o(G).

Lemma
For any triangle-free graph G, eq(L(G)) = o(G). J
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Theorem
For any graph G, loglog x(G)+1 < o(G) < 2(loglog x(G) +1).

A homomorphism from a graph G to a graph H is a function
f: V(G) — V(H) such that any two adjacent vertices of G get mapped
to adjacent vertices of H.

Lemma

Let G and H be graphs such that there is a homomorphism from G to H.
Then o(G) < o(H).

Consequence

For any graph G with chromatic number k, o(G) < o(Kj).
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Theorem (Erdés & Szekeres 1935)

Any sequence of n? + 1 real numbers contains a monotonic subsequence of
n+ 1 elements.

v

Consequence

k . .
Any sequence of 22 + 1 vectors of R¥ contains a monotonic subsequence
of size 3 (here monotonic means monotonic in each coordinate).

Theorem (De Bruijn 1940's)

There exists a sequence of 22“ vectors of R without monotonic
subsequence of size 3.




THE UPPER BOUND

Theorem
For any integer n > 2, 0(K,) < 2(log, log, n +1).

n= 2%

1112 91015161314 3 4 1 2 7 8 5 6
4 32187 6 5121110 916151413



THE UPPER BOUND

Theorem
For any integer n > 2, 0(K,) < 2(log, log, n +1).

n= 2%

K 11 12| 9|10 15 16|13|14 3 4|1|2 7 8 5 6
4 3|2|1 8 7|6|51211/10| 9 16 15 14 13



THE UPPER BOUND

Theorem
For any integer n > 2, 0(K,) < 2(log, log, n +1).

n= 2%

1112 91015161314 3 4 1 2 7 8 5 6
K+1] 432187 6 5121110 9 16151413
1234567 8 910111213141516



THE UPPER BOUND

Theorem
For any integer n > 2, 0(K,) < 2(log, log, n +1).

n= 2%

[1112 91015161314 3 4 1 2 7 8 5 6 |

K+1] 432187 6 5121110 9 16151413
1234567 8 910111213141516



THE UPPER BOUND

Theorem

For any integer n > 2, 0(K,) < 2(log, log, n +1).

n= 2%

[11 12

10 15 16

13[14 3 4 1 2 7 8 5 6 |

k+1| 4 3
12

187
4 5 6

5121110 9 16 15 14 13

6
718 9101112 13141516
I



THE UPPER BOUND

Theorem
For any integer n > 2, 0(K,) < 2(log, log, n +1).

n= 2%

[11 12| 9f10 15 1613[14 3 4 1 2| 7|8 5 6 |
K+1| 4 3[2|1 8 7
3

T

51211 10 9|16|15 14 13
12

6
4 5 6718 9 1011 12)13|14 15 16
I



THE UPPER BOUND

Theorem

For any integer n > 2, 0(K,) < 2(log, log, n +1).

n= 2%
I 1
|HQ?NEEEM34127856|
K+1| 4 3[2|1 8 7|[6|5 121110 9|16[15 14 13
1 2|3|4 5 6[7|8 91011 12|13|14 15 16
I J

e




THE UPPER BOUND

Theorem
For any integer n > 2, 0(K,) < 2(log, log, n +1).

n= 2%

[11 12| 9f10 15 1613[14 3 4 1 2| 7|8 5 6 |
K+1| 4 3[2|1 8 7
3

T

51211 10 9|16|15 14 13
12

6
4 5 6718 9 1011 12)13|14 15 16
I



THE UPPER BOUND

Theorem

For any integer n > 2, 0(K,) < 2(log, log, n +1).

n= 2%
I 1
|HQ?NEEEM34127856|
K+1| 4 3[2|1 8 7|[6|5 121110 9|16[15 14 13
1 2|3|4 5 6[7|8 91011 12|13|14 15 16
I J

e




THE LOWER BOUND

Theorem
For any graph G, x(G) < 227

6)-1




THE LOWER BOUND

Theorem
For any graph G, x(G) < 227

G)-1




THE LOWER BOUND

Theorem
For any graph G, x(G) < 22

G)-1

X



THE LOWER BOUND

Theorem

For any graph G, x(G) < 22°(¢)

-1

<]

X



THE LOWER BOUND

Theorem
For any graph G, x(G) < 227(0)~1,

<]



CONCLUSION

Theorem
For any graph G, loglogx(G)+1 < o(G) < 2(loglog x(G) +1).




CONCLUSION

Theorem

For any graph G, loglog x(G)+1 < o(G) < 2(loglog x(G) +1).

Corollary

For any graph G, 1 (loglog x(G) + 1) < eq(L(G)) < 2(loglog x(G) + 1).




CONCLUSION

Theorem
For any graph G, loglog x(G)+1 < o(G) < 2(loglog x(G) +1).

Corollary
For any graph G, 1 (loglog x(G) + 1) < eq(L(G)) < 2(loglog x(G) + 1).

Lemma

A graph G has o(G) = 3 precisely if 3 < x(G) < 4, and 0(G) =4
precisely if 5 < x(G) < 12.




CONCLUSION

Theorem
For any graph G, loglog x(G)+1 < o(G) < 2(loglog x(G) +1).

Corollary
For any graph G, 1 (loglog x(G) + 1) < eq(L(G)) < 2(loglog x(G) + 1).

Lemma
A graph G has 0(G) = 3 precisely if 3 < x(G) <4, and 0(G) =4
precisely if 5 < x(G) < 12.

Theorem

It is NP-complete to decide whether or not a triangle-free graph G has
0(G) < 3 (resp. o(G) < 4). Equivalently, it is NP-complete to decide
whether or not eq(L(G)) < 3 (resp. eq(L(G)) < 4).




