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Abstract

We present a class of instances of the existence of a second object
of a specified type, in fact, of an even number of objects of a specified
type, which generalizes the existence of an equilibrium for bimatrix
games. The proof is an abstract generalization of the Lemke-Howson
algorithm for finding an equilibrium of a bimatrix game.
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A d-oik, C = (V, F ), short for d-dimensional Euler complex, d ≥ 1, is a
finite set V of elements called the vertices of C and a family of d+1 element
subsets of V , called the rooms of C, such that every d element subset of V
is in an even number of the rooms.

A wall of a room means a set obtained by deleting one vertex of the room
- and so any wall of a room in an oik is the wall of a positive even number
of rooms of the oik.

Example 1. A d-dimensional simplicial pseudo-manifold is a d-oik where
every d-element subset of vertices is in exactly zero or two rooms, i.e., in a
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simplicial pseudo-manifold any wall is the wall of exactly two rooms. An
important special case of simplicial pseudo-manifold is a triangulation of a
compact manifold such as a sphere.

Example 2. Let Ax = b, x ≥ 0, be a tableau as in the simplex method,
whose solution-set is bounded and whose basic feasible solutions are all non-
zero (non-degenerate). Let V be the column-set of A. Let the rooms be the
subsets S of columns such that V −S is a feasible basis of the tableau. This
is an (n− r−1)-oik where n is the number of columns of A and r is the rank
(the number of rows) of A. In fact it is a triangulation of an (n − r − 1)-
dimensional sphere – in particular it is combinatorially the boundary of a
‘simplicial polytope’.

Example 3. Let the n members of set V be colored with r colors. Let
the rooms be the subsets S of V such that V −S contains exactly one vertex
of each color. This is an (n − r − 1)-oik. In fact it is the oik of Example 2
where each column of A is all zeroes except for one positive entry.

Example 4. An Euler graph, that is a graph such that each of its vertices
is in an even number of its edges (the rooms), is a 1-oik.

Example 5. For any connected Euler graph G with n vertices (n ≥ 3),
we have an (n−2)-oik (V,K) where V is the set of edges of G and the rooms
are the edge-sets of the spanning trees of G.

Example 6. For any connected bipartite graph G with m edges and n
vertices we have an (m−n)-oik where V is the edge-set of G, and the rooms
are the edge-complements of spanning trees of G.

Example 7, generalizing Examples 5 and 6. Where M is an Euler
binary matroid, that is a binary matroid of rank r such that each cocircuit,
in fact each cocycle, is even, we have an (r − 1)-oik, where V is the set of
elements of the matroid, and the rooms are the bases of the matroid.

(A binary matroid M is given by a 0-1 matrix, A, mod 2. The elements
of M are the columns. The bases of M are the linearly independent sets
of columns. The cocycles are the supports of the row vectors generated by
the rows of A. The cocircuits are the minimal cocycles. Matroid M is Euler
when each row of A has an even number of ones. See, e.g., [4, 7].)

Let M = [(V, Fi) : i = 1, , h] be an indexed collection of oiks (which we
call an oik-family) all on the same vertex-set V .
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The oiks of M are not necessarily of the same dimension. Of course, all
of them may be the same oik.

A room-family, R = [Ri : i = 1, , h], for oik-family M , is where, for each
i , Ri is a room of oik i (i.e., a member of Fi ). A room-partition R for M
means a room-family whose rooms partition V , i.e., each vertex is in exactly
one room of R.

Theorem 1 Given an oik-family M and a room-partition R for M , there
exists another different room-partition for M . In fact, for any oik-family M ,
there is an even number of room-partitions.

Proof. Choose a vertex, say w, to be special. A w-skew room-family for
oik-family M means a room-family, R = [Ri : i = 1, , h], for M such that w
is not in any of the rooms Ri, some vertex v is in exactly two of the Ri , and
every other vertex is in exactly one of the Ri .

Consider the so-called exchange-graph X, determined by M and w, where
the nodes of X are all the room-partitions for M and all the w-skew room-
families for M . Two nodes of X are joined by an edge of X if each is obtained
from the other by replacing one room by another. It is easy to see that the
odd-degree nodes of X are all the room-partitions for M , and all the even-
degree nodes of X are the w-skew room-families for M . Hence there is an
even number of room-partitions for M . ¤

‘Exchange algorithm’: An algorithm for getting from one room-partition
for M to another is to walk along a path in X, not repeating any edge of
X, from one to another. Where each oik of the oik-family M is a simplicial
pseudo-manifold, X consists of disjoint simple paths and simple cycles, and
so the algorithm is uniquely determined by M and w.

Where oik-family M consists of two oiks of the kind in Example 2, the
exchange algorithm is the Lemke-Howson algorithm for finding a Nash equi-
librium of a 2-person game. Salvani and Von Stengel [6] show that the number
of steps in the Lemke-Howson algorithm can grow exponentially relative to
the size of the two tableaus of the game.

It is not known whether there is a polytime algorithm for finding a Nash
equilibrium of a 2-person game. Chen and Deng [3] (see also [5]) proved
a deep completeness result which is regarded as some evidence that there
might not be a polytime algorithm.
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Suppose each oik of M is given by an explicit list of its rooms, each oik
perhaps a simplicial pseudo-manifold, perhaps a 2-dimensional sphere. Is
some path of the exchange graph not well-bounded by the number of rooms?

How about the exchange algorithm when each oik of M is a 1-oik? If each
oik of M is the same 1-oik then the well-known, non-trivial, non-bipartite
matching algorithm [4, 7] can be used to find, if there is one, a first and a
second room-partition.

How about the exchange algorithm where each oik of M is an Euler binary
matroid? For an oik-family like that, the well-known, non-trivial, ‘matroid
partition’ algorithm [4, 7] can be used to find, if there is one, a first and a
second room-partition.

Example 8. A pure (d + 1)-complex, C = (V, F ), means simply a
finite set, V , and a family, F , of d + 2 element subsets. The boundary,
bd(C) = (V, bd(F )), of any pure (d + 1)-complex, C, means the pure d-
complex where bd(F ) is the family of those d+1 element subsets of V which
are subsets of an odd number of members of F .

For any pure (d + 1)-complex, C, its boundary, bd(C), is a d-oik.

This is more-or-less the first theorem of simplicial homology theory. By
recalling the meaning of d-oik, it is saying that for any pure (d+1)-complex,
C, every d element subset, H, of V is a subset of an even number of (d + 1)
element sets which are subsets of an odd number of the (d + 2) element
members of F . It can be proved graph theoretically by observing that, for
any d element subset, H, of V , the following graph, G, has an even number
of odd degree vertices: The vertices of G are the (d+1) element subsets of V
which contain H. Two of these (d+1) element vertices are joined by an edge
in G when their union is a (d + 2) element member of F . Clearly a vertex
of G is a subset of an odd number members of F , and hence is a member of
bd(F ), when it is an odd degree vertex of G.

What can we say about bd(F ), besides Theorem 1, when F is the set of
bases of a matroid?

In [2], different exchange graphs were studied. In [1], it was shown that
Thomason’s [8] exchange graph algorithm for finding a second hamiltonian
circuit in a cubic graph is exponential relative to the size of the given graph.
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